SYLLOGISTICS, MODALITY, TRIVALENCE

Autori

  • George CEAUŞU Associated Prof. Dr., “Al.I. Cuza” University of Iasi (Romania), Department of Philosophy and Social-Political Sciences. Author of the book: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>Logica mirabilis</i> (Editura Alfa, 2004).

Cuvinte cheie:

Boolean semantics, modal semantics, modal syllogistics, closed or completed class of functions

Rezumat

Both modal systems and syllogistics are pseudo-Boolean logic cases for which Boolean function class construction (FB) is insufficient. A complete and consistent trivalent comput-ing system can provide semantics for such Boolean logics, the developing strategy follow-ing two classes: the existing Boolean functions (FBE) and incomplete or partial (FBI) ones. In the first part of this paperwork we are dealing with a complete trivalent logic axiomatiza-tion, taking into consideration a complete class namely the trivalent function class (FT) as well as the closed classes of trivalent functions (in the way of Emil L. Post). In this second part, as we noticed that Venn’s diagram model is consistent, complete and non-ambiguous for building the immediate syllogistic inferences and Aristotelian syllogistic, we are trying to approach a modal interpretation of syllogistics. Finally, based on this Boolean semantics provided by syllogistic interpretation, we have in view to build modal computing systems starting with T minimal system.

Referințe

Bernays, Paul; Fraenkel, A., Axiomatic Set Theory, North Holland, Amsterdam, 1958

Bishop, E., Foundations of Constructive Analysis, Mc Graw-Hilll, New York, 1967

Borger, Egon, Computability, Complexity, Logic, Elsevier Science Publ. B. V., Amsterdam, 1989, pp. 337-399

Bowen, K., Model Theory for Modal logic: Knipke Models for Modal Predicate Calculus, D. Reidel Publ. Comp., Dordrecht-Holland, Boston, 1979, pp. 103 sq.

Brouwer, E.L.J. Collected Works. (ls` vol: Philosphy and Foundations of Mathematics). North-Holland, Amsterdam, 1975.

Calude, C.; Cazanescu, V., Bazele informaticii. Lectii de logica matematica The fundamentals of computer science. Lessons on mathematical logic), Universitatea din Bucuresti, 1984

Cazacu, C.; Ceausu, G.; Slabu N., The Algorithms Complexity of Programs Transformations, STACS Congress on Algorithms and Complexity, Caen, 1993

Cazacu, Constantin; Slabu, Valeria, Logica matematica (Mathematical logic), Editura "Stefan Lupascu", Iasi, 1999, pp. 139-148

Ceausu, George, Logica mirabilis, Editura Alfa, Iasi, 2004

Ceausu, George, Teoremele de incompletitudine ale lui Gödel - semnificatii logice si aplicatii extralogice (The Gödel’s incompleteness stheorem:logical meanings and extra-logicalapplications), doctoral thesis,, Universitatea "Al. I. Cuza", Iasi, 1998

Church, Alonso., Introduction to Mathematical Logic, vol. I, University Press, Princeton, 1956

Dalen, Dirk van, Logic and Structure, Springer-Verlag, Berlin, 1980

Devlin, Keith J., Sets, Functions and Logic. An Introduction to Abstract Mathematics. Chapman & Hall, London, 1992

Devlin, Keith J., Aspects of Constructibility, Springer-Verlag, Berlin, 1973

Ducrot, Oswald, Dire et ne pas dire. Principes de sémantique linguistique, Editions Hermann, Paris, 1972

Ersov, Yu. L.; Paljutin, E. A., Matematiceskaja loghica", Nauka, Moskva, 1975.

Gödel, Kurt, Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I, "Monatshefte fur Mathematik und Physik", 38, 1931, pp. 173-98; trad. engl.: On Formally Undec:dable Propositions of Principia Mathematica and Related Systems, Oliver and Boyd, Edinburgh, 1962

Grzegorczik, Andrei, An Outline of Mathematical Logic, D.Reidel & Polish Science Publ., Warszaw, 1974

Heijenoort, J. van (ed.), From Frege to Gödel, Harvard University Press, Cambridge, Mass, 1967

Hilbert, David; Ackermann, Wilhelm, Grundzüge der theoretischen Logik, Springer Verlag, Berlin, 1939

Hilbert, David; Bernays, Paul, Grndlagen der Mathematik, vol. I, Berlin, 1939

Ioan, Petru, Logica integrala (Integral logic), vol. I, Editura "Stefan Lupascu", Iasi, 1999, pp. 37-92

Kneebone, G.T. et alii,. Mathematical Logic and the Foundation of Mathematics, Van Nostrand, London, 1972

Kossovskij, I. K., Foundations of Elementary Algorithms Theory (in Russian), St. Petersburg University, 1987

Manin, Iurij A., A Course in Mathematical Logic, Springer-Verlag, Berlin, 1978

Paris, J., Harrington, L., A Mathematical Incompleteness in the Peano Arithmetic, în: Barwise, Jon (ed.), 1977, pp. 1133-1142

Plisko, V. E., Iscislenije A. N. Kolmogorova kak fragment minimal nogo iscislenija, "Uspehi matematiceskih nauk", 43, 264, 6, 1988, pp. 79-91

Popa, Cornel, Logica predicatelor (Predicate logic), Editura Hyperion XXI, Bucuresti, 1992

Pontrjaghin, L. S., Learning Higher Mathematics, Springer-Verlag, Berlin, 1984

Quine, W. V., Set Theory and Its Logic, University Press, Harvard, Mass., 1971

Schutte, Kurt., Proof Theory, Springer-Verlag, Berlin, 1977

Shoenfield, J. R., Mathematical Logic, Addison Wesley, Reading, Mass., 1967

Slupecki, J.; Borkowski, L., Elements of Mathematical Logic and Set Theory, Pergamon Press and PWN, Warszawa, 1967

Smorynski, C., Hilbert's Programme, "CWI Quatterly", Centre for Math. and Computer Science, Amsterdam, 1988, pp. 3-89.

Stojmenovic, Igor, Some Combinatorial and Algorithmic Problems in Many-Valued Logics, Editura Universitatii, Novi Sad, p. 71

Takeuti, G.; Zaring W. M., Introduction to Axiomatic Set Theory, Springer-Verlag, New York, 1971

Tarski, Alfred, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Clarendon Press, Oxford, 1956

Tarski, Alfred, Undecidable Theories, North-Holland, Amsterdam, 1953

Descărcări