SYLLOGISTICS, MODALITY, TRIVALENCE
Keywords:
Boolean semantics, modal semantics, modal syllogistics, closed or completed class of functionsAbstract
Both modal systems and syllogistics are pseudo-Boolean logic cases for which Boolean function class construction (FB) is insufficient. A complete and consistent trivalent comput-ing system can provide semantics for such Boolean logics, the developing strategy follow-ing two classes: the existing Boolean functions (FBE) and incomplete or partial (FBI) ones. In the first part of this paperwork we are dealing with a complete trivalent logic axiomatiza-tion, taking into consideration a complete class namely the trivalent function class (FT) as well as the closed classes of trivalent functions (in the way of Emil L. Post). In this second part, as we noticed that Venn’s diagram model is consistent, complete and non-ambiguous for building the immediate syllogistic inferences and Aristotelian syllogistic, we are trying to approach a modal interpretation of syllogistics. Finally, based on this Boolean semantics provided by syllogistic interpretation, we have in view to build modal computing systems starting with T minimal system.References
Bernays, Paul; Fraenkel, A., Axiomatic Set Theory, North Holland, Amsterdam, 1958
Bishop, E., Foundations of Constructive Analysis, Mc Graw-Hilll, New York, 1967
Borger, Egon, Computability, Complexity, Logic, Elsevier Science Publ. B. V., Amsterdam, 1989, pp. 337-399
Bowen, K., Model Theory for Modal logic: Knipke Models for Modal Predicate Calculus, D. Reidel Publ. Comp., Dordrecht-Holland, Boston, 1979, pp. 103 sq.
Brouwer, E.L.J. Collected Works. (ls` vol: Philosphy and Foundations of Mathematics). North-Holland, Amsterdam, 1975.
Calude, C.; Cazanescu, V., Bazele informaticii. Lectii de logica matematica The fundamentals of computer science. Lessons on mathematical logic), Universitatea din Bucuresti, 1984
Cazacu, C.; Ceausu, G.; Slabu N., The Algorithms Complexity of Programs Transformations, STACS Congress on Algorithms and Complexity, Caen, 1993
Cazacu, Constantin; Slabu, Valeria, Logica matematica (Mathematical logic), Editura "Stefan Lupascu", Iasi, 1999, pp. 139-148
Ceausu, George, Logica mirabilis, Editura Alfa, Iasi, 2004
Ceausu, George, Teoremele de incompletitudine ale lui Gödel - semnificatii logice si aplicatii extralogice (The Gödel’s incompleteness stheorem:logical meanings and extra-logicalapplications), doctoral thesis,, Universitatea "Al. I. Cuza", Iasi, 1998
Church, Alonso., Introduction to Mathematical Logic, vol. I, University Press, Princeton, 1956
Dalen, Dirk van, Logic and Structure, Springer-Verlag, Berlin, 1980
Devlin, Keith J., Sets, Functions and Logic. An Introduction to Abstract Mathematics. Chapman & Hall, London, 1992
Devlin, Keith J., Aspects of Constructibility, Springer-Verlag, Berlin, 1973
Ducrot, Oswald, Dire et ne pas dire. Principes de sémantique linguistique, Editions Hermann, Paris, 1972
Ersov, Yu. L.; Paljutin, E. A., Matematiceskaja loghica", Nauka, Moskva, 1975.
Gödel, Kurt, Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I, "Monatshefte fur Mathematik und Physik", 38, 1931, pp. 173-98; trad. engl.: On Formally Undec:dable Propositions of Principia Mathematica and Related Systems, Oliver and Boyd, Edinburgh, 1962
Grzegorczik, Andrei, An Outline of Mathematical Logic, D.Reidel & Polish Science Publ., Warszaw, 1974
Heijenoort, J. van (ed.), From Frege to Gödel, Harvard University Press, Cambridge, Mass, 1967
Hilbert, David; Ackermann, Wilhelm, Grundzüge der theoretischen Logik, Springer Verlag, Berlin, 1939
Hilbert, David; Bernays, Paul, Grndlagen der Mathematik, vol. I, Berlin, 1939
Ioan, Petru, Logica integrala (Integral logic), vol. I, Editura "Stefan Lupascu", Iasi, 1999, pp. 37-92
Kneebone, G.T. et alii,. Mathematical Logic and the Foundation of Mathematics, Van Nostrand, London, 1972
Kossovskij, I. K., Foundations of Elementary Algorithms Theory (in Russian), St. Petersburg University, 1987
Manin, Iurij A., A Course in Mathematical Logic, Springer-Verlag, Berlin, 1978
Paris, J., Harrington, L., A Mathematical Incompleteness in the Peano Arithmetic, în: Barwise, Jon (ed.), 1977, pp. 1133-1142
Plisko, V. E., Iscislenije A. N. Kolmogorova kak fragment minimal nogo iscislenija, "Uspehi matematiceskih nauk", 43, 264, 6, 1988, pp. 79-91
Popa, Cornel, Logica predicatelor (Predicate logic), Editura Hyperion XXI, Bucuresti, 1992
Pontrjaghin, L. S., Learning Higher Mathematics, Springer-Verlag, Berlin, 1984
Quine, W. V., Set Theory and Its Logic, University Press, Harvard, Mass., 1971
Schutte, Kurt., Proof Theory, Springer-Verlag, Berlin, 1977
Shoenfield, J. R., Mathematical Logic, Addison Wesley, Reading, Mass., 1967
Slupecki, J.; Borkowski, L., Elements of Mathematical Logic and Set Theory, Pergamon Press and PWN, Warszawa, 1967
Smorynski, C., Hilbert's Programme, "CWI Quatterly", Centre for Math. and Computer Science, Amsterdam, 1988, pp. 3-89.
Stojmenovic, Igor, Some Combinatorial and Algorithmic Problems in Many-Valued Logics, Editura Universitatii, Novi Sad, p. 71
Takeuti, G.; Zaring W. M., Introduction to Axiomatic Set Theory, Springer-Verlag, New York, 1971
Tarski, Alfred, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Clarendon Press, Oxford, 1956
Tarski, Alfred, Undecidable Theories, North-Holland, Amsterdam, 1953